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Abstract—We consider two-way wire-tap channels, where two
users are communicating with each other in the presence of an
eavesdropper, who has access to the communications through a
multiple-access channel. We find achievable rates for two dif-
ferent scenarios, the Gaussian two-way wire-tap channel, (GTW-
WT), and the binary additive two-way wire-tap channel, (BATW-
WT). It is shown that the two-way channels inherently provide a
unique advantage for wire-tapped scenarios, as the users know
their own transmitted signals and in effect help encrypt the other
user’s messages, similar to a one-time pad. We compare the
achievable rates to that of the Gaussian multiple-access wire-
tap channel (GMAC-WT) to illustrate this advantage.

I. INTRODUCTION

Information theoretic secrecy was first developed by Shan-
non in [1]. In this work, Shannon showed that to achieve
perfect secrecy in communications, which is equivalent to
providing no information to an enemy cryptanalyst, the a
posteriori probability of a message must be equivalent to its
a priori probability.

In [2], Wyner applied this concept to the discrete memo-
ryless channel by defining the wire-tap channel, where there
is a wire-tapper who has access to a degraded version of the
intended receiver’s signal. Using the normalized conditional
entropy of the transmitted message given the received signal
at the wire-tapper as the secrecy measure, he found the region
of all possible rate/equivocation pairs, and the existence of a
secrecy capacity, Cs, the rate up to which it is possible to
transmit zero information to the wire-tapper.

Reference [3] extended Wyner’s results to Gaussian chan-
nels. Csiszár and Körner, [4], improved Wyner’s results to
weaker, “less noisy” and “more capable” channels. Further-
more, they examined sending common information to both the
receiver and the wire-tapper, while maintaining the secrecy of
private information that is communicated to the receiver only.

In [5], it is shown that the existence of a “public” feedback
channel can enable the two parties to be able to generate
a secret key even when the wire-tap capacity is zero. More
recently, the notion of the wire-tap channel has been extended
to parallel channels, [6], relay channels, [7], and fading chan-
nels, [8]. Broadcast and interference channels with confidential
messages are considered in [9]. References [10], [11] exam-
ine the multiple access channel with confidential messages
where two transmitters try to keep their messages secret from
each other while communicating with a common receiver.
Gaussian multiple-access wire-tap (GMAC-WT) channels are
considered in [12]–[15], where transmitters communicate with

an intended receiver in the presence of an external wire-
tapper. In [13], [14], we considered the case where the wire-
tapper gets a degraded version of the signal at the legitimate
receiver, and found the secrecy-sum capacity for the collective
set of constraints using Gaussian codebooks and stochastic
encoders. In [15], the general (non-degraded) GMAC-WT was
considered, and an achievable rate region for perfect secrecy
with collective secrecy measures was found.

In this paper, we consider the two-way channel where
two nodes communicate with each other, [16]. We introduce
the two-way wire-tap (TW-WT) channel where an external
eavesdropper receives the transmitters’ signals through a
general MAC. In particular, we consider the Gaussian Two-
Way Wire-Tap Channel (GTW-WT), and the Binary Additive
Two-Way Wire-Tap Channel (BATW-WT). We utilize as our
secrecy constraint, the normalized conditional entropy of the
transmitted secret messages given the eavesdropper’s signal,
as in [2]. We show that satisfying this constraint implies the
secrecy of the messages for both users. In both scenarios,
transmitters are assumed to have one secret and one open
message to transmit. We find an achievable secure rate region,
for both cases, where users can communicate with arbitrarily
small probability of error with the intended receiver under
perfect secrecy from the eavesdropper.

We also show that in cases where a user is not able to
achieve secrecy, that user may help the other user increase its
secrecy rate or achieve secrecy if it was not possible before,
by jamming the eavesdropper. Thus, similar to the Gaussian
multiple-access wire-tap channel, [15], cooperative jamming
helps increase the secrecy rate.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider two users communicating in the presence of
an intelligent and informed eavesdropper. Each transmitter
k ∈ K , {1, 2} has a secret message, Wk, from a set of
equally likely messages Wk = {1, . . . ,Mk}. The messages
are encoded using (2nRk , n) codes into {X̃n

k (Wk)}, where
Rk = 1

n log2 Mk. The encoded messages {X̃k} = {X̃n
k } are

then transmitted. Each receiver k = 1, 2 gets Yk = Y n
k and

the eavesdropper Z = Zn. Receiver k decodes Yk to get an
estimate of the transmitted message of the other user. The users
would like to communicate with arbitrarily low probability
of error, while maintaining perfect secrecy of the messages,
W. We assume the channel parameters are universally known,
including at the eavesdropper, and that the eavesdropper also
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Fig. 1. The standardized GTW-WT system model

knows the codebooks and coding scheme. We first define
achievability for this wire-tap channel:

Definition 1 (Achievable secrecy rates). The rate pair
(R1, R2) is said to be achievable for the TW-WT, if for ε > 0
there exists a code of sufficient length n such that

1
n

log2 Mk ≥ Rk − ε k = 1, 2 (1a)

Pe ≤ ε (1b)
H(W|Z)
H(W)

≥ 1− ε (1c)

where
Pe =

1
M1M2

∑

W∈ W1×W2

P{Ŵ 6= W|W was sent}. (2)

is the average probability of error for a given code.

A. The Gaussian Two-Way Wire-Tap Channel

We describe the Gaussian Two-Way Wire-Tap Channel
(GTW-WT), which corresponds to a two-way wireless com-
munications system. We assume slow fading, such that each
codeword experiences the same channel coefficient, and also
that all parties know the channel coefficients. The signals at
the intended receiver and the eavesdropper are given by

Y1 = X̃1 +
√

hM
2X̃2 + Ñ1 (3a)

Y2 =
√

hM
1X̃1 + X̃2 + Ñ2 (3b)

Z =
√

hW
1X̃1 +

√
hW

2X̃2 + ÑW (3c)

such that 1
n

∑n
i=1 X̃2

ki ≤ ˜̄Pk, for k = 1, 2 and Ñk ∼
N (

0, σ2
k

)
and ÑW ∼ N (

0, σ2
W

)
. For simplicity, without loss

of generality, we consider an equivalent standard form as in
[14] as illustrated in Figure 1.

Y1 =
√

α1X1 + X2 + N1 (4a)
Y2 = X1 +

√
α2X2 + N2 (4b)

Z =
√

h1X1 +
√

h2X2 + NW (4c)

where, for k = 1, 2,

• the codewords {X̃} are scaled to get X1 =
√

hM
1

σ2
2
X̃1 and

X2 =
√

hM
2

σ2
1
X̃2;

• the maximum powers are scaled to get P̄1 = hM
1

σ2
2

˜̄P1 and

P̄2 = hM
2

σ2
1

˜̄P2;

• the transmitters’ new channel gains are given by α1 = σ2
2

hM
1 σ2

1

Z

⊕
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Fig. 2. BATW-WT system model

and α2 = σ2
1

hM
2 σ2

2
;

• the wiretapper’s new channel gains are given by h1 = hW
1 σ2

2
hM
1 σ2

W

and h2 = hW
2 σ2

1
hM
2 σ2

W
;

• the noises are normalized by Nk = Ñk

σ2
k

and NW = ÑW
σ2

W
.

B. The Binary Additive Two-Way Wire-Tap Channel

This model, shown in Figure 2, corresponds to a more
classical wire-tapped channel, where the binary signals of two
transmitters are superimposed on a common wire, as in [16],
and random bit errors are produced as in a binary symmetric
channel. For the BATW-WT, the received signals are given by

Y1 = X1 ⊕X2 ⊕E1 (5a)
Y2 = X1 ⊕X2 ⊕E2 (5b)
Z1 = X1 ⊕X2 ⊕EW (5c)

where E1,E2,EW are n-vectors of binary random variables
representing errors such that P{Eki = 1} = εk < 1

2 and
P{EWi = 1} = εW < 1

2 ;εk is the error probability at receiver
k = 1, 2; εW is the error probability at the wiretapper.

III. ACHIEVABLE RATES

In this section, we give our results on some achievable rates
for the TW-WT channels considered in this paper. The proofs
for both the GTW-WT and BATW-WT are similar and are
summarized in Appendix I. For details, please see [17]. We
first define a few quantities:

[ξ]+ , max {ξ, 0}, g(ξ) , 1
2

log(1 + ξ)

h(ξ) , −ξ log ξ − (1− ξ) log(1− ξ), 0 ≤ ξ ≤ 1

P ,
{
(P1, P2) : 0 ≤ P1 ≤ P̄1, 0 ≤ P2 ≤ P̄2

}

and

Ck =

{
g (Pk) , if GTW-WT
1− h(εk), if BATW-WT

(6)

CW =

{
g (h1P1 + h2P2) , if GTW-WT
1− h(εW), if BATW-WT

(7)

We now give achievable secret-rate regions for the two chan-
nels. In both channels under consideration, capacity without
secrecy constraints can be achieved using independent inputs:
for the GTW-WT, this was shown in [18]. For the BATW-WT,
it is easily checked that the symmetry conditions in [16] apply,
and the capacity region is a rectangle obtained by equiprobable
inputs. The achievable secrecy rate regions in this paper are
obtained using independent channel inputs.
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Theorem 1. Let

RGTW(P1, P2) = {(R1, R2) :
Rk ≤ g(Pk) k = 1, 2
R1 + R2 ≤ [g(P1) + g(P2)− g(h1P1 + h2P2)]

+} (8)

The rate region given below is achievable for the GTW-WT:

RGTW = convex closure of
⋃

P∈P
RGTW(P) (9)

Proof: See Appendix I.

Theorem 2. For the BATW-WT, we can achieve the following
set of rates:

RBATW = {(R1, R2) :
Rk ≤ 1− h(εk) k = 1, 2
R1 + R2 ≤ [1 + h(εW)− h(ε1)− h(ε2)]

+} (10)

Proof: See Appendix I.

IV. MAXIMIZATION OF SUM RATE FOR GTW-WT

The achievable regions given in Theorem 1 depends on
the transmit powers. We are naturally interested in the power
allocation P∗ = (P ∗1 , P ∗2 ) that would maximize the total
secrecy sum-rate. Without loss of generality, we will assume
that h1 ≤ h2. We formally state the problem as:

max
P∈P

C1 + C2 − CW

= max
P∈P

g (P1) + g (P2)− g (h1P1 + h2P2) (11)

≡ min
P∈P

ρ(P) (12)

where
ρ(P) , 1 + h1P1 + h2P2

(1 + P1)(1 + P2)
(13)

The optimum power allocation is stated below:

Theorem 3. The secrecy sum-rate maximizing power alloca-
tion for the GTW-WT is given by:

(P ∗1 , P ∗2 ) =





(P̄1, P̄2), if h1 ≤ 1 + h2P̄2, h2 < 1 + h1P̄1

(P̄1, 0), if h1 < 1, h2 ≥ 1 + h1P̄1

(0, 0), otherwise
(14)

Proof: See Appendix II.
Note that the solution is such that as long as a user is not
single-user decodable, it should be transmitting with maximum
power. Comparing this with the GGMAC-WT region found
in [15], we note the same structure, namely, that secrecy is
achievable for both users, as long as neither can be decoded
by treating the other user as noise.

V. COOPERATIVE JAMMING

In [15], it was shown that for the GGMAC-WT, a user who
ceases transmission to maximize the secrecy sum-rate may
jam the eavesdropper and allow an increase in the remaining
users’ secrecy rate, or even allow a user to achieve a positive
secrecy rate. Similarly, in Theorem 3, we see that when user
2 is single-user decodable, i.e. h2 ≥ 1 + h1P̄1, it must cease

R2

R2

R1

R1

Fig. 3. Example region for a TW-WT

transmission in order to maximize sum rate. We show that in
this case, user 2 can similarly help user 1 increase its secret
rate and/or achieve a positive secrecy rate. This is achieved by
letting user 2 transmit white Gaussian noise instead of actual
codewords. Since receiver 2 knows the transmitted codewords,
it can subtract these from its received sequence to get a clear
channel from user 1. However, the eavesdropper, devoid of
this side information, sees more noise and the achievable
secrecy capacity for user 1 (since we are reduced to the single
user case, [3] established that this is indeed the capacity) is
increased as it is the difference of the capacity to user 1’s
channel to receiver 2 and its channel to the eavesdropper. This
is stated below:

Theorem 4. The optimum power allocations for the cooper-
ative jamming scheme described is

(P ∗1 , P ∗2 ) =

{
(P̄1, P̄2), if h1 < 1 + h2P̄2

(0, 0), otherwise
(15)

Proof: See Appendix III.
This can be interpreted as “jam with maximum power if it is
possible to change user 1’s effective channel gain such that it
is no longer single-user decodable”. If h2 < 1 + h1P̄1, then
user 2 must be transmitting instead of jamming.

We can similarly consider a scheme for the BATW-WT.
Note that the achievable secret-sum rate is 0 when h(ε1) +
h(ε2) ≥ 1 + h(εW). This implies that εk ≥ εW, k = 1, 2. Let
ε1 ≤ ε2. Then, user 2 can randomly transmit bits drawn ac-
cording to the binary distribution with P{X2i = 1} = 1

2 . This
is equivalent to randomly adding a bit to the eavesdropper’s
signal. Hence the probability of error at the eavesdropper for
user 2’s codeword becomes 1

2 , and the eavesdropper cannot
gain any information about user 1’s transmitted codeword.
Receiver 2, however, knows the jamming sequence, which
it can subtract from its received sequence. Thus, user 1 can
transmit to user 2 at a rate 1− h(ε1), which is its capacity.

VI. NUMERICAL RESULTS AND CONCLUSIONS

We now illustrate our results via numerical examples. A
typical region for the TW-WT channels considered is shown
in Figure 3. Figure 4 shows an achievable region as a function
of the power allocations. We can see that the optimum power
allocation is given by Theorem 3. Finally, Figure 5 shows the
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secrecy capacity increase for user 1 as a function of user 2’s
jamming power.

Comparing the GTW-WT region to the achievable region
for the GGMAC-WT, [15], we can see the enlargement of the
rate region due to the two-way communications scenario. Even
though the signal received by the eavesdropper is the same,
the two-way channel effectively provides a shared secret,
namely the transmitters’ knowledge on their own codewords,
and hence enlarges the rate region. In addition, unlike the
GGMAC-WT, sum secret rate is not limited by the channel
gains as the power limitations are relaxed for the GTW-WT.
In fact, we see that limP̄→∞R1 + R2 = g( 1

2 P̄ ).
An important thing to note is that in both channels, the

achievability proof uses a scheme that requires the receivers
to decode one of 2n(Rk+Rx

k) codewords. Thus, the actual rate
of communication is Rk + Rx

k , although only a rate Rk is
“secret” information. We can utilize the extra codewords to
communicate at an additional rate Rx

k , although the secrecy
of these messages is not guaranteed. Thus, we may use the
channel to its full capacity, but are limited in rate by how
much of the communication can be kept secret as in [3], [14].

In conclusion, we see that two-way channels provide an ex-
tra advantage for wire-tap scenarios as the receivers, knowing
their own transmitted codewords, gain an advantage over the
eavesdropper that is not possible for multiple-access wire-tap
channels. As a result, a larger achievable region is found, and
for the scenarios considered cooperative jamming proves to
be even more useful as it does not hurt the transmitting user’s
rate as it does for the GMAC-WT.

APPENDIX I
ACHIEVABILITY PROOFS

The proofs follow along the same line as the proof in [15]
for the achievability of the general GMAC-WT. Let P ∈ P
and R ∈ RGTW for the GTW-WT, and let R ∈ RBATW for the
BATW-WT. Consider user j = 1, and the following scheme
(the other user does exactly the same):
1) Generate 2 codebooks X1, X̃1. X1 consists of M1 code-

words, and codebook X̃1 has Mx
1 codewords. The code-
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Fig. 5. GTW-WT cooperative jamming secrecy capacity as a function
of P2 with different h1 for P̄ = 2, h2 = 4.2

books are generated such that
a) For the GTW-WT, each component of the codes in X1 is

drawn ∼ N (0, λ1P1 − ε), and each component of X̃1 is
drawn ∼ N (0, (1− λ1)P1 − ε) where ε is an arbitrarily
small number to ensure that the power constraints on the
codewords are satisfied with high probability.

b) For the BATW-WT, codewords in X1 and X̃1 are drawn
uniformly according to a binary distribution with p = 1

2 .
2) To transmit message W1 ∈ W1, user 1 finds the codeword

corresponding to W1 in X1 and also uniformly chooses a
codeword from X̃1. User 1 then adds (xor’s for the binary
case) these codewords and transmits the resulting codeword,
X1, so that we are actually transmitting (uniformly) one of
M1M

x
1 codewords, and the rate of transmission is R1+Rx

1 ,
where Rx

1 = 1
n log Mx

1 .
We choose the rates to satisfy

Rk + Rx
k ≤ Ck, k = 1, 2 (16)

R1 + R2 ≤ C1 + C2 − CW (17)
Rx

1 + Rx
2 = CW (18)

The first set of conditions for both channels guarantee that
receiver 1 can reliably decode the 2n(R2+Rx

2 ) codewords from
user 2 since it knows its own transmitted codeword, X1,
and can subtract (or xor for the binary case) this with its
received sequence Y1 to get a single-user channel from the
other transmitter such that for the GTW-WT, it has X2 + N1

and for the BATW-WT, it has X2 ⊕ E1. Then, the standard
channel coding arguments, see [19], can be used to establish
that rates of Ck can be achieved for user k. Define

XΣ =

{√
h1X1 +

√
h2X2, if GTW-WT

X1 ⊕X2, if BATW-WT
(19)

Then,

H(W|Z) = H(W,Z)−H(Z) (20)
= H(W,XΣ,Z)−H(XΣ|W,Z)−H(Z) (21)
= H(W) + H(Z|W,XΣ)−H(Z)

+ H(XΣ|W)−H(XΣ|W,Z) (22)
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= H(W)− I(XΣ;Z) + I(XΣ;Z|W) (23)

where the key observation is that the eavesdropper’s informa-
tion on W only depends on XΣ, i.e. W → XΣ → Z, and
hence H(Z|W,XΣ) = H(Z|XΣ).

Note that we have I(XΣ;Z) ≤ nCW, from the capacity
of the standard single user binary additive channel. We can
also write I(XΣ;Z|W) = H(XΣ|W)−H(XΣ|W,Z). Since,
given each pair of messages, W, we uniformly send one
of Mx

1 Mx
2 random sum-codewords, we have H(XΣ|W) =

log(Mx
1 Mx

2 ) = n (Rx
1 + Rx

2) = nCW. In addition, we have
H(XΣ|W,Z) ≤ ε, since given W, we transmit one of only
nCW codewords, and the eavesdropper can reliably decode
these. Thus, we also have I(XΣ;Z|W) ≥ nCW − nε. Using
these in (23), we see that

H(W|Z) ≥ H(W)−nCW + nCW −nε = H(W)−nε (24)

APPENDIX II
PROOF OF THEOREM 3

The Lagrangian is given by,

L(P,µ) = ρ(P)−∑2
k=1µ1kPk +

∑2
k=1µ2k(Pk − P̄k) (25)

Equating the derivative of the Lagrangian to zero,

∂L(P∗, µ)
∂P ∗j

= ρ̇j(P∗)− µ1j + µ2j = 0 (26)

where

ρ̇j(P) , hj − Φj(P)
(1 + P1)(1 + P2)

(27)

Φj(P) , 1 + h1P1 + h2P2

1 + Pj
(28)

It is easy to see that if hj > Φj(P), then µ1j > 0, and we have
P ∗j = P̄j . If hj < Φj(P), then we similarly find that P ∗j = 0.
Finally, if hj = Φj(P), we can have 0 < P ∗j < P̄j . However,
such a user has ρ̇j(P∗) = 0, so we can set P ∗j = 0 with no
effect on the secrecy sum-rate. Thus, we have P ∗j = P̄j if
hj < φj(P), and P ∗j = 0 if hj ≥ φj(P).

Now consider user 1. If P ∗1 = 0, then h2 ≥ h1 ≥ 1+h2P
∗
2 ,

but if P ∗2 > 0, this implies that h2 >
1+h2P∗2
1+P∗2

and P ∗2 = 0.
This contradiction shows that if P ∗1 = 0, then P ∗2 = 0. Assume
P ∗1 = P̄1, i.e. h1 < 1+h2P

∗
2 . If h2 > 1+h1P̄1, then P ∗2 = 0.

If h2 < 1 + h1P̄1, then P ∗2 = P̄2.
APPENDIX III

PROOF OF THEOREM 4
We can write the problem formally as:

max
P∈P

g (P1)− g

(
h1P1

1 + h2P2

)
≡ min

P∈P
ρ(P)

φ2(P2)
(29)

where ρ is given in (13) and φ2(P2) , 1+h2P2
1+P2

.
The Lagrangian is given by

L(P,µ) =
ρ(P)

φ2(P2)
−∑2

k=1µ1kPk+
∑2

k=1µ2k(Pk−P̄k) (30)

Taking the derivative with respect to P ∗1 , P ∗2 , we get:

ρ̇1(P∗)
φ2(P ∗2 )

− µ11 + µ21 = 0 (31)

ρ̇2(P)φ2(P ∗2 )− ρ(P)φ̇2(P ∗2 )
φ2

2(P
∗
2 )

− µ12 + µ22 = 0 (32)

where ρ̇ is as given in (27) and φ̇2(P ) , h2−φ2(P )
1+P .

Consider user 1. If we have h1 > 1 + h2P
∗
2 , then we must

have µ11 > 0 since the first and last terms in (31) would be
positive, making P ∗1 = 0. Assume P ∗1 > 0 ⇒ µ11 = 0. If
h1 < 1 + h2P

∗
2 , then the first term is negative, and P ∗1 = P̄1.

If h1 = 1 + h2P
∗
2 , then the sum rate is zero, and we can set

P ∗1 = 0. For user 2, it is very easy to see that since it only
harms the jammer, the optimal jamming strategy should have
P ∗2 = P̄2, as long as user 1 has P ∗1 > 0. This can also be seen
by noting that ρ̇2(P)φ2(P ∗2 )− ρ(P)φ̇2(P ∗2 ) < 0 for P ∗1 > 0.
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